Handbook of
Research in Mobile

Business:

Technical, Methodological, and
Social Perspectives

Bhuvan Unhelkar
University of Western Sydney, Australia

IDEA GROUP REFERENCE

Hershey - London « Melbourne - Singapore

Idea Group |
| REFERENCE

200

Chapter XV
Administration of Wireless
Software Components

Franck Barbier
PauWare Research Group, France

Fabien Romeo
PauWare Research Group, France

ABSTRACT

Software components embedded in mobile and wireless devices, as ordinary components
deployed in distributed systems, have to be managed in order to recover faults, to trace and
analyze behaviors, to enable business services such as online maintenance, customer practice
understanding and so on. Despite the existence of management standards and platforms, the
implementation of management facilities inside components as well as the possibility to access
and operate these facilities by means of appropriate interfaces (a configuration interface for
instance in order to instrument dynamical re-configuration) are not actually available. In this
scope, this chapter discusses and provides a design method and an associated Java library
in order to have manageable and self-manageable components specific to mobile and wireless

environments.

INTRODUCTION

A major trend concerning the mobile system
industry is the need for designing software
applications as assemblies of reusable compo-
nents, such as Java components in J2ME envi-
ronments and C# components in Windows CE
environments. Components are interconnected

through well-defined interfaces, while their
implementation remains hidden. Thisresults in
increased reuse, easy isolation of faults, and
overall improvement of quality and reliability.
Furthermore, it also enables components to be
independently deployed by third parties. De-
ployment occurs on various devices such as
mobile phones, personal digital assistants

Copyright © 2006, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

Administration of Wireless Software Components

(PDAS), set-top boxes, smart cards, and so on.
Owing to the fact that mobile deployment envi-
ronments are different from development envi-
ronments, abnormal behaviors and/or misuses
occur. Consequently, some deferred assess-
ment is only possible if components have been
endowed with remote administration capabili-
ties, including state and behavior supervision,
even control, at the time components face
unstabie execution contexts.

From a business perspective, such a global
approach is a way for supporting and thus for
offering better customer services: better start-
up processes, analysis of deficiencies, possible
corrections through (re)configurations, mar-
keting-based studies of common practices and
expectations, and so forth. All of the well-
known qualities of the component-based devel-
opment technology (National Coordination Of-
fice for Information Technology Research and
Development, 2001; Szyperski, Gruntz, &
Murer, 2002) seem promising to achieve the
necessary flexibility and adaptability imposed
by the mobile systems™ market.

The purpose of this chapter is to propose
appropriate concepts, techniques, and tools to
manage component behaviors and their associ-
ated interactions within wireless devices. Man-
agement activities stress component behavior
tracing and possible dynamic (re)configuration
in order to ensure actual supervision and con-
trol of mobile devices. Some of the contribution
comes from the results of the Component+
European project (www.component-plus.org)
in which the idea of Built-In Test (Barbier,
2005) has been formalized, developed, and put
into practice for multimedia software compo-
nents.

This chapter extends some of the ideas
relatingto the BIT technology that initially does
not support administration facilities. We espe-
cially deal with the notion of “wireless software
component.” Even if this expression may a

priori not make sense, we here mean software
components deployed in wireless systems. The
chapter is organized in three main parts. The
first part reviews the current relation between
CBSE and software for mobile systems. After
justifying an interesting potential synergy be-
tween the two domains, a discussion about
component management architecture standards
as Java Management eXtensions or JMX (Sun
Microsystems, 2002; Kreger, Harold, &
Williamson, 2003) is proposed. This first part
ends with a focus on UML 2 in particular and
executable modeling language in general, in
order to answer the question: What could be a
suitable technical framework for wireless com-
ponent administration?

While the second part of the chapter ex-
poses our contribution in terms of executability
of the UML 2 notation and its inherent imple-
mentation for component administration, the
third and final part deals with a fully imple-
mented case study—a home automation sys-
tem, including a complex wireless software
component corresponding to a programmable
thermostat. The state machine diagram of this
component is in the Appendix. For illustration
purposes, screen shots are offered, especially
those relating to the programmable thermostat’s
management activities in Web browsers.

SOFTWARE FOR MOBILE AND
WIRELESS DEVICES:
AN OVERVIEW

Nowadays, a great diversity of mobile devices
is offered to consumers in different market
segments such as telephony, digital interactive
television, home automation, and automotive
industry. Each device category uses specific
hardware architectures and equipment to bet-
ter fit customer requirements. For instance,
PDAs use more powerful processors than mobile

201

phones and also provide larger screens; and car
navigation systems, for instance, use voice
recognition, while cheaper devices often sup-
port simpler software functionality. Despite the
existence of varied functionality, software for
wireless devices primarily benefits from being
constructed on the top of recognized and stable
platforms such as J2ME in the Java world.
Next, the existence of norms permits laying
down assumptions for programmers so that
their code does not deal with a large number of
technical development/deployment contexts.
For user interfaces of PDAs and cell phones,
for instance, the MIDP (mobile information
device profile) norm (Bloch & Wagner, 2003)
is in this scope a relevant framework.

However, new software paradigms such as
autonomous computing may make software
components notaware of their computing envi-
ronment (e.g., new possible interactions with
unknown components, expected dynamic ad-
aptations). Since this problem cannot be tack-
led at development time, but only when the
system is deployed, there is a need for extra
code that may anticipate such potential chal-
lenges. In this line of reasoning, we have de-
fined the BIT technology that refers to testing
code that remains at runtime. As for adminis-
tration, it refers to the possibility for ruling such
embedded code remotely, because of the need
for administration policies involving notonly a
single component but a system of components.
Inthe case of mobile devices, overheads caused
by this extra code raise performance problems and
thus create the necessity of an adequate manage-
ment architecture presented in this chapter.

WIRELESS SOFTWARE
COMPONENTS

The component technology (Szyperski et al.,
2002) has been proven mature for numerous

202

Administration of Wireless Software Components

application domains such as Web-based and
business applications, and real-time systems.
However, its usage has been evolving slowly in
the field of mobile systems.

Components indeed run in large infrastruc-
tures involving different server types, more or
less normalized protocols, and sophisticated
services (e.g., timer services, transaction man-
agement services), all of these being often
incompatible with hardware features of mobile
systems that offer a reduced set of possibilities
for software deployment. Software compo-
nents may thus exist within wireless devices,
but many interesting system-based services
have to be externalized. One may for instance
imagine transaction management facilities that
can only be implemented on a server-side base
with appropriate communication. Applyingroll-
back actions for a wireless software compo-
nent then becomes not so easily compared to an
Enterprise JavaBeans in an ordinary J2EE
server. This especially results from the need
for transaction management-oriented code that
may clutter, even damage, any user-oriented
functioning in a wireless device. However, in
the field of distributed applications, the need for
management of not only component units, but
component assemblies, makes software in mo-
bile systems a piece in a puzzle but not a
standalone running machine—a wireless de-
vice is no more than a node in a distributed
application. At least, virtual links have thus to
be created with components that run on other
nodes (called remote components later in this
chapter), but have close collaboration with those
on mobile systems.

Wireless software components are in es-
sence reactive systems in the sense that their
behavior mostly consists of processing a lot of
events of different types (incoming communi-
cation flow, user interface interaction, etc.).
The high frequency of events and the large
spectrum of interpretation contexts show that

Administration of Wireless Software Components

state machines are good candidates for behav-
ior specification. More generally, building soft-
ware for mobiles systems with design lan-
guages that have interesting features such as
(i) being standards, (ii) supporting executability
(Mellor & Balcer, 2002), and (iii) supporting
compositionality (Bock, 2004), permits one to
weave—more clearly and more rigorously—
wireless components with server-side compo-
nents with which they have to collaborate.

ADMINISTRATION

The idea of administration (the term manage-
ment has been used interchangeably) stems
from the network domain in which network
element attributes and behaviors have to be
supervised and, in case of failure, they also
have to be driven so that communication occurs
as well as possible: availability of damaged
modes, correction actions as switching commu-
nication flows, and so forth.

The need for standardization has generated
dedicated administration supports, namely dedi-
cated protocols including SNMP (Simple Net-
work Management Protocol) or CMIP (Com-
mon Management Information Protocol) and,
in the world of Java and software components,
the Java Management eXtensions framework.

Administration covers two main activities:
supervision (e.g., in-situ testing) and monitor-
ing (e.g., dynamical (re)configuration). In the
Java global context, network elements that are
“resources” that are viewed within application
top layers as software components are often
named managed objects.

Java Management eXtensions
JMX has been specified and implemented to

have an open standard for managing resources
based on an abstract approach. IMX high level

of abstraction does not rely on specific proto-
cols or other platform-dependent properties.
Moreover, the wireless nature of resources and
software components may be hidden without
changing administration strategies and policies.
We here see a concrete advantage of incorpo-
rating software components into wireless de-
vices: an uniformed access to resources that is
independent of running contexts, as for in-
stance Bluetooth-based protocols and, more
generally, any coercive communication mecha-
nism imposed by wireless systems.

JMX architecture is grounded on three main
categories of software components (Figure 1):

. MBeans (Managed Beans) are the com-
ponents that can be managed by JMX.
They define standard interfaces in which
a high or low number of functional opera-
tions (normal behavior) as well as in-
house management operations (e.g., state
observation and tracing) will be acces-
sible at an administration level.

. MBean agents that are directly deployed
in JMX servers are responsible for con-
trolling their locally registered MBeans.
An MBeans agent generally copes with a
set of MBeans in relation to predefined
JMX services to ease management of
MBeans. These services are common
services such as timer services, but also
more relevant ones such as relation ser-
vices thatare peculiar to compositionality
management of component systems. We
may also notice that JMX owns ametalevel,
in the sense that MBean agents are them-
selves manageable entities at the Distrib-
uted services level (see Figure 1).

o Connectors are plugged into MBean agents
to make them remotely available to man-
agement applications. The communica-
tion protocol is specific to a connector
typethatinessenceaims at linking IMX to

203

Administration of Wireless Software Componenis

Figure 1. JMX stereotvped architecture (Sun Microsystems, 2002)

Distributed services level

i

BT W—

i

v
Connector and protocol adaptors

Agent level

MBean server

MBean
agent

Instrumentation level

third-party applications. Figure 1 shows
the case of an HTML adaptor that con-
nected some given agents with a Web
browser.

Administration of Wireless
Environments

The management of pervasive computing envi-
ronments is forced by the lack of processing
power of smart devices such as cellular phones.
In other words, such devices rely on layered
distributed systems that aim to coordinate and
effectively ensure most of the expected func-
tionality. So, even though the idea of adminis-
trating wireless environments is not new, there
is no standard and rigorous method for design-
ing wireless software components so that they
are really manageable.

An illustration of current problems is, for
instance, dynamic (re)configuration. One may
imagine such a management-based use case
foramobile device inthe context of a business-
oriented service, which is here online mainte-
nance. For devices equipped with the very
latest technologies, including hardware and
software, statistics show than return rates for
reparation are close to 20%! This is exclusively
due to market pressure that prompts to sell

204

products that are not tested enough and may
even be non-mature.

Technically, the delivering of patches re-
sulting from a mandatory, prior, and remote in-
depth testing, itself based on resuming and/or
on simulating special running contexts, cannot
be yet easily instrumented. What indeed does
“resetting an embedded component to have an
initial (safe) context” or “setting up a compo-
nent to an accurate context (a well-defined
state)” mean?

The novelty of our approach is to design
components, their internal parts especially, so
that the desired administration operations may
be logically described. More precisely, this
includes the possibility to formally express what
is a stable running context, namely forcing a
given wireless component to immediately be in
a set of parallel states. This also amounts to
reaching a context in safely terminating any
data processing, namely monitoring entry and
exit operations for states. Our solution is
grounded on state machine modeling languages,
as well as formal execution (simulation) rules
of state machines that are plugged into compo-
nents. In addition, the PauWare.Statecharts
Java library is offered to achieve all of these
objectives.

Administration of Wireless Software Components

Figure 2. BIT style for a wireless software component

«componenty
Component X

Component X's
functional code
]

i

Component X's
test code

Component X's required interface

Most of the contribution presented here is
an extension ofthe BIT technology that initially
does not address management issues. Briefly
speaking, this technology advocates persistent
test code in components (see Figure 2) in order
to support deployment-based testing. State
machines are used for instrumenting model-
based testing, and above all, for having the
possibility of rapidly prototyping components
for assessment purposes. Another major point
of BIT is to be a gate for accessing a more or
less important quantity of a component’s en-
capsulated part. For management purposes,
BIT-based wireless components have required
interfaces, functional (a.k.a., provided) inter-
faces, testing interfaces, and also configuration
interfaces that are specific to management
(see Figure 2). The two last sorts of interfaces
are made up of services whose implementation
explores and, in the spirit of administration,
possibly changes a component’s inside.

UML 2-BASED DESIGN OF
WIRELESS SOFTWARE
COMPONENTS

Anoutstanding feature of wireless components
is that they have to react to many distinct types
of events whose interpretation varies accord-

OO0

Component X s provided interface
Component X s configuration interface

Component X's testing interface

ing to several discrete contexts. Regarding
graphic user interfaces of smart devices for
instance, Horrocks (1999) advocates the use of
statecharts (Harel, 1987) for designing and
implementing such interfaces. On a cellular
phone for example, each physical button is
associated with a typed event and a precise
context that leads to a specific processing at the
time a given function is running under the
auspices of the phone’s owner.

More generally, in the scope of CBSE, the
recent release (version 2) of UML (OMG,
2003a, 2003b) offers all of the necessary and
sufficient integrated modeling constructs, in-
cluding state machine diagrams (i.e., Harel’s
statecharts), sequence diagrams (useful for
communication modeling), and component dia-
grams for the design of manageable wireless
components. All of this happens in the context
of the MDA/MDE initiative in which
executability promotes lightweight model check-
ing (Mellor & Balcer, 2002) and seamless
implementation through model transformation:
from platform-independent models as the
statechart of a programmable thermostat wire-
less component in the Appendix to platform-
dependent models that, for instance, may refer
to specific properties as coercive communica-
tion as mentioned above.

205

Figure 3. Management architecture

Wireless Environment
Mobile
-

Mobile

Mobile

Wireless
Communication

A main point of UML 2 state machine
diagrams is that they favor any reasoning with
abstract states that aim at capturing the key
situations and the critical phases in which mo-
bile devices require supervision and control.
Once again, in the absence of an underlying
formalism, management activities cannot rely
on precise representations as those offered by
state machine diagrams.

TECHNICAL FRAMEWORK

Since supervision and control are dual activities
involved in management, one may wonder how

Management System

Manager

Administration of Wireless Software Components

Component’s Image

-t

Application Server

both activities have to use component states. In
practice, while control implies that managers
change—under well-defined conditions and cir-
cumstances (see reset Java method below)—
states of managed components, supervision
consists for managers of acquiring information
on current states of managed components and
clusters of components. Considering that these
activities have to be realized by means of
wireless communication and in relation with
highly constrained devices, our intention is to
minimize overheads generated and sustained
by our management system on the mobile side.
From a business point of view, the quality of
service must not be attenuated by administra-

Figure 4. Canonical behavior of a wireless component

Wireless component

source event/ action, “remote component.message

206

Administration of Wireless Software Compone

nts

Figure 5. Common communication scraps in wireless environments

sd initial communication

:Wireless component

:Remote component

source

event

message

Figure 6. Overview of the technical framework

Wireless component

source event/ actiol
{managed compon

n,
ent.state changed(source event,state changed data)

JI2ME

Managed component

O

state changed(source event,state changed data)/
emote component.message

J2SE/I2EE

tion course. We purposefully create replica-
tions (caches or images) of managed compo-
nents in the management system (see Figure
3).

Wireless Component State
Machines

Figure 4 depicts the canonical behavior of an
ordinary wireless software component. In other
words, source event corresponds to a typed
reaction to an external phenomenon as, for
instance, a pressed device button. Numerous
actions may be (in order: use of “,” for formal-
izing chronology in Figure 4) launched in re-

sponse to the processing of source event. Most
of the actions are the displaying and/or the
refreshing of the mobile device’s user inter-
face.

Only two actions are drawn in Figure 4:
actionis aninternal action (typically, displaying
something) in the sense that it does not require
any other resources than those available within
the modeled device. In contrast to “remote
component.message, action also does not yield
any communication. In UML, an instance of the
SendSignaldction metatype is represented by
an expression similar to Aremote
component.message. That is by definition a
communication unit towards a remote compo-

207

Administration of Wireless Software Components

nent in order to create a global collaboration
between several components. Such a collabo-
ration corresponds to a strict requirement (“use
case” in UML) of the designed wireless envi-
ronment. This may be summarized by means of
a UML Sequence Diagram (see Figure 5).

Mirroring

At this time, components deployed in mobile
devices have poor autonomy. Therefore, most
collaborations, like the one shown in Figure 5,
are recurrent and systematic. We here mean
that peer-to-peer communication, nowadays,
may not be considered as a technological lock
for mobile devices, but transforming such equip-
ment into Internet “points™ (i.e., Internet self-
contained and autonomous nodes) is slowed
down by many factors, such as hardware and
platform limits, security constraints, and so
forth. Forinstance, one cannot today runa JMX
server on a mobile device for administration
purposes.

Starting from this general observation, our
technical framework consists of having an in-
termediate or mirror component, named man-
aged component, between wireless and remote
components. Moreover, managed components
are exact clones of wireless components (see
Figure 3). The difference between wireless
components and managed components is, as
indicated in their generic name, that these last
ones are plugged into management environ-
ments. In Figure 6, states machines of each

type are specified, as well as a new way for
communicating: We review the models in Fig-
ures 4 and 5 so that managed components may
act as proxies between wireless and remote
components.

In addition, since ourtechnical framework is
based on Java, we express the need for a J2SE/
J2EE architecture in order to have at one’s
disposal administration facilities. On the other
hand, J2ME serves as the software platform
for wireless components. The idea is simple:
administrating wireless components occurs
through the administration of perfect clones.

Communication is thus revised in Figure 6 so
that exchanges with remote components are
replaced in wireless components by notifica-
tions of state changes carrying all of the neces-
sary data which allows managed components
torule their automaton in symbiosis with that of
their source. Clearly, the automaton of a wire-
less component is implemented twice: within
the mobile device in which it acts as a driver,
and through the automaton of the managed
component. It always possesses the same shape
in the sense that managed components imitate
their sources. Furthermore, Figure 6 shows that
managed components serve as delegates be-
tween wireless and remote components: “re-
mote component.message Now appears in
managed components’ automata instead of in
those of wireless components.

While the automaton on the top of Figure 6
supplies the emission of the state changed
message, the other one, beneath, shows the

Figure 7. Common communication scraps in administrated wireless environments

sd revised communication

source event

:Wireless component ‘Managed component :Remote component]

state changed

message

response to message

208

Administration of Wireless Software Components

Figure 8. Inverse direction of communication for control purposes

Managed component

response to message/"wireless component.response to message

reset/*wireless component.reset @

] J2SEN2EE |

Wireless component

response to message/... -

Only internal actions may be run
_there in order to avoid an infinite
--=""" [cycle in the processing of events

reset >©

J2ME

consequential reception. As a result, both au-
tomata are “equivalent,” meaning that they are
not physically synchronized, but they go through
the same lifecycle. The unique problem relating
tosuch an interval is that control activities have
to done with care. However, the original com-
munication mechanism of statecharts is broad-
cast communication (Harel, 1987) that by defi-
nition makes no assumption about receivers’
status. That is the case here when possible
responses go back to wireless components: any
state is acceptable. The broadcast communica-
tion mechanism is supported by the
PauWare.Statecharts library.

Control

Managed components, as members of distrib-
uted applications, are subject to requests com-
ing from varied components. In Figure 7, the
scenario shows that an event called response
to message must be processed within the man-
aged component’s statechart that has previ-
ously sent message. From a functional point of

view, response to message is destined to the
managed component’s source: the wireless
component is a replication.

Besides, managed components in essence
receive administrative requests (e.g., reset in
Figure 8) that also have to be propagated to
wireless components. As a result, models in
Figure 8 sum up both kinds of reaction.

Design Method

The generic micro-architecture specific to our
notions of wireless component and managed
image may be synthesized by means of a UML
Component Diagram (see Figure 9). Wireless
components provide two kinds of interfaces.
The first one is for local events (Wireless
component local provided interface) as, for
instance, keyboard inputs (source event in
Figures 4, 5, 6, and 7). The second one is for
requests coming from outside (Wireless com-
ponent remote provided interface) that must
together be implemented by wireless and man-
aged components (example: response to mes-

209

Administration of Wireless Software Components

and managed components (UML 2 Component

Figure 9. Assembly pattern between wireless

Wireless com porent
remote provided
interface

Wireless com ponent
local provided
interface
«component»
Timed component O———— Wireless component ——{Tim er Service

Managed com ponent
CB ()Supen'isiun interface

configuration
acomponenty
Managed component ————C‘ﬁm er Service

Diagram)

interface

Timed com ponrent O——
Managed component Wireless com ponent
configuration remote provided
interface interface

Figure 10. Detailed basic operations offered in each kind of interfaces from Figure 9

ainterfacen
Timed component
Tme-oui(..) ‘

wintecfaven l
Wireless compunent local provided interface |

source evenl()

i
i
1
wcomponentn
A Wireless camponent |
i N
ainterfacen
Wireless component remote provided interface |

d Y/
[inlsrfses — “interfacen
Maunaged com ponent configuration interface Suncrvision interface
reset{) state changed(...} tesponse o messagel)
4 = b
. i e
. Teom poncaly L
“ Managed component 7

winterfaces
Timed component
fime-oui(..] |

210

Administration of Wireless Software Components

Figure 11. Alternative to Figure 10

source event()

winterfacen

Wireless component local provided interface

winterfacen
Timed component

acomponenty
Wireless component

time-out(...)

1
\‘|/ «usen S

apterfaeen
Managed component configuration interface
reset()

ainterfacen
Supervision interface

winterfacen
Wireless component remote provided interface

state changed(..)
AN

Q response to message()
5

N ((ﬂump(}l\:lll)) P
Managed component

Figure 12. User interface of the home automation device and its possible evolution

sage that is interpreted in both automata in
Figure 8).

In the administration context, management
operations are assigned to special interfaces,
namely Managed component configuration
interface and Supervision interface in Figure
9. Finally, specific incoming events and flows
for wireless components may lead to creation
of similar phenomena on the managed compo-
nents’ side without any communication. In Fig-
ures 9 and 10, we take an example about timer
services that are located and thus acquired

from different running platforms. This means
here that interpreted fime-out events on the
wireless components’ side are simulated with
the same contexts and constraints on the man-
aged components’ side. More generally, this
leads to the detailed and competing views in
Figures 10 and 11 that raise the problem of
control flow segmentation.

In Figure 11, Timed component is inherited
by Wireless component remote provided in-
terface instead of being independently imple-
mented (symbol is white triangle with dotted

211

Administration of Wireless Software Components

Figure 13. Component architecture of the home automation system

vinferfaces
Wireless programmuble thermostat user interface
[-el)
temp down(}

winterfacen
Temperatuse sensor client |
= temp up()
ambient tem perature changeditem perature : Tem perature)

winterfacey
Wireless programmable thermostat local
provided interface

/N

winterfacen
Timed component
«components time-out(...)
. Wireless programm able .
® thermostat N

Other inheritance
links here

- T >

s I AN
‘& V ausey ‘

winterfacey

winterfacey

anterfucen
Managed programm able therm ostat configuration interface Administration interface Wireless programmable thermostat remote
resel()

state changed(...) provided interface
s i

N «componenis L
“J{Managed programmable}”
thermostat

Figure 14. Web browser screenshot of the management environment

MBean View

+ MBexn Name: Paty
« AMBean fasa Clas

List of Alflean attribetes:

N

Desusipgiuo of £ ¢

woid e

Description of ruse

wid feesc]

e

212

Administration of Wireless Software Components

line in UML) by both wireless and managed
components. Note that Figure 9 deliberately
makes no assumption on this point. In Figure 11,
being thus “included” in Wireless component
remote provided interface, the Timed com-
ponent interface makes managed components
receiving time-out events from wireless com-
ponents instead of using platform-dependent
services (i.e., J2SE/J2EE services). So, both
implementations of Timed component continue
to differ, but that of managed components is
fixed and unique, accepting time-out events
coming from wireless components.

CASE STUDY: A HOME
AUTOMATION SYSTEM

Figure 12 is the user interface that is an entry
for some of the received events (e.g., temp
down, temp up, f-c) of the complex statechart
appearing in the Appendix. Although being
complex, the UML statechart in the Appendix
is easily and straightforwardly implemented
thanks to the PauWare.Statecharts library
(see the following code).

Figure 13 shows the chosen component
architecture, namely the separation between
what is locally received by the Wireless pro-
grammable thermostat component which
implements Wireless programmable thermo-
stat local provided interface, and what is
received by the Managed programmable ther-
mostat component through Wireless program-
mable thermostat remote provided interface.

For instance, temperature sensor events
(ambient temperature changed) are acquired
by Wireless programmable thermostat and
propagate to Managed programmable ther-
mostat, while switching events, such as season
switch turned off which definitively stops the
overall home automation system (see statechart
in Appendix), are connected with any port of

Managed programmable thermostat and
embody control commands when delegated to
Wireless programmable thermostat.

Figure 14 isthe final result showing all ofthe
possible operations supported by the Managed
programmable thermostat component in a
Web browser. Visible buttons in windows of
Figure 14 simply and straightforwardly map to
service implementation for Managed pro-
grammable thermostat. Here is some Java
code illustrating how the PauWare.Statecharts
library helps implementation:

public void f_c() throws Statechart_exception {
I/ f-c event (see Appendix and/or popup
menu in Figure 12)
_BIT_programmable_thermostat.fires(
_Ambient_temperature_displaying,_Ambient
_temperature_displaying);
_BIT_programmable_thermostat.fires(
_Target_temperature_displaying,_Target
_temperature_displaying,true, this,"switch_mode”);
_BIT_programmable_thermostat.fires(
_Program_target_temperature
_refreshing,_Program_target_temperature_
refreshing,true,this,”switch_mode”);
_BIT_programmable_thermostat.run_to
_completion(*f-c");

}

The run_to_completion predefined routine
conforms to UML 2 executability rules and,
consequently, lasts through stable and safe
automaton contexts. Management operations
may thus occur as the reset user-defined func-
tion that may look like:

public void reset() throws Statechart
_exception {// configuration service
to_state("Operate”); // Operate may
be seenwithinthe statechartin Appendix

213

CONCLUSION AND FUTURE
DIRECTIONS

This chapter highlights the great need for ad-
ministration of mobile environments, including
the management of the collaboration between
software components deployed in these envi-
ronments and software components deployed
in server-side tiers. Numerous hardware/soft-
ware barriers preclude having full administra-
tion capabilities on wireless sides only. Further-
more, even in traditional management environ-
ments, logic and rationale for expressing super-
vision and control operations do not exist. For
instance, JMX supplies a standard infrastruc-
ture but does not explain how to design man-
ageable components.

The chapter shows that executable model-
ing, supported by the statecharts’ reputable
formalism associated with a dedicated library,
both allow the methodical design of compo-
nents for administration. The proposed ap-
proach is illustrated by a programmable ther-
mostat wireless component.

REFERENCES

Barbier, F. (2005). COTS component testing
through built-intest. In S. Beydeda & V. Gruhn
(Eds.), Testing commercial-off-the-shelf com-
ponents and systems (p. 55-70). Berlin:
Springer-Verlag.

Bloch, C., & Wagner, A. (2003). MIDP 2.0
stvle guide for the Java 2 platform (micro
ed.). San Francisco: Addison-Wesley.

214

Administration of Wireless Software Components

Bock, C. (2004). UML 2 composition model.
Journal of Object Technology, 3(10), 47-73.

Harel, D. (1987). Statecharts: A visual formal-
ism for complex systems. Science of Com-
puter Programming, 8, 231-274.

Horrocks, 1. (1999). Constructing the user
interface with statecharts. San Francisco:
Addison-Wesley.

Kreger, H., Harold, W., & Williamson, L. (2003).
Java and JMX—building manageable sys-
tems. San Francisco: Addison-Wesley.

Mellor, S., & Balcer, S. (2002). Executable
UML—a foundation for model-driven archi-
tecture. San Francisco: Addison-Wesley.

National Coordination Office for Information
Technology Research and Development. (2001).
High confidence software and systems re-
search needs. Arlington, VA: NCO/ITRD.

Object Management Group. (2003). UML 2.0
infrastructure specification. Needham, MA:
OMG.

Object Management Group (2003). UML 2.0
superstructure specification. Needham, MA:
OMG.

Sun Microsystems. (2002). Java management
extensions instrumentation and agent speci-

fication, vI.2. Santa Clara, CA: Sun

Microsystems.

Szyperski, C., Gruntz, D., & Murer, S. (2002).
Component software—beyond object-ori-
ented programming (2™ ed.). San Francisco:
Addison-Wesley.

Administration of Wireless Software Components

APPENDIX: STATECHART OF THE PROGRAMMABLE THERMOSTAT

WIRELESS COMPONENT

Home automation system ‘

Operate
time-out(1000, null)! set time(+ 1)

Setup

time-out(1000.null) fno input < 90}/ set no inpui(no input + 1)

semp dowa [larget temperature » Min/
“self target tem peratuce changed

temp up [target temperature < M ax)f
“selfdargel lemperature changed

fc
switch mode

time-out(1000.null) [alternatel
setalternately(alternately

\ N

fAmbient temperature displaying
L entry/ display am bient tem perature

f-c

time-out(1000,null) falternately = 2|/
set alternately(0}

time-out(1000.null) [alternately = 2]
sot alternately(0)

.
(Current date and time displayin
L entry/ display current date and tim e

time-out{1000. null) falternately <> 2|/
sel aliernately(aliernately + 1)

Program refreshing

time backw ard time forward

[Period and program time refreshing]
L enlry/ display period and program time J

el siew program |

temp up!
sel a0 ingu{0}

temp duwal
set na inputih)
Z

ﬁ’roeram target temperature refreshing
lime backward

entry/ display program target tem perature

N~
Current date and time refreshin

~ J
entry/ display current date and time set day

swilch mode

view program [period = 8]/
set periodily

time forward

Set program

view program [period < §]/
sel peciodiperiod + 1)

temp down [largel temperature - M)l

target temperature decrem ent larzet lemperalure inecem ent

{= run program

time-oul([900,0ull) [not weckend]
sel targel temperature(] 4

time-outi1600.0ullj [weekend s
sel targel lemperature(S.8)

hld temp

temp down [targel temperature » M in}
target temperalure.decre

T —

temp up fargel lemperature < Max])
[t temperalure.increm enl

no input

s i
prmeme “timer.da be kiiled “timer.te be set(1000)

seasen swilch Wwraed off
*fan relag.stop(fan

larget lemperature chanzed {season switch in Is cooland
ambient temperature -~ targel temperature]/
“ait conditioner celar.run. fan relav.ron. ran indicator.on

R
targel lemperatore changed [season swilch in is caot and ambient
temperatuse.asCelsivs - (larget temperatyre.asCelsivs - delia)]’
“air conditiones relay.slop, *fan relay.stop(fan switeh in s auta),
fun indicator off

targel temperature changed [season sw ilch in Is heal and ambient
temperature < larget lemperature]l
farnace relay.run, fon reloy.run.” rn indicator.on
target lemperature changed (season switch in 5 heat and ambicnt
temperature.asCelsivs ~ ilarzel temperature.asCelsivs + delal}/
fornace relay stop, fan relay.stop(fan sw itch in Is auto),
“run indicator.off

lemp up |rarget tem perature < M ax)/

time-out(1600,aultj __}

fan switeh turned on/

time backw ards
selprogram timei-[3)

time farwacd!
sel program time(+15)

Set program time

temp up {program 3 at{period).target lemperature © Max)!
pragram-aifperiod) darget tem peraturc.increm ant

- view progran/_|
set period(l}

[Set program target temperatu re]

temp down [program aliperiod) argel lemperature > Min}t
progrom - at{period)Jarget tem pecalure decrem ent

Set time

f

time backward/
sel lime(-60]

time forward!
set limef+ 60)

= 90]

Set current minute sel clock

lime backw ard! time forward?
sel time(-3600) sel time(+3600)
set clock
\ Setcurrent hour /
lime backw ard/ tine forward/
sel time(-36400) sel fim e(+86400)
sel day A———

air condilioner relay stop,“famace relay.stop,
swilch in 12 auto),*run indicalor.o

ambient tem perature changed (lemperature) [season swilch in Is coolan.
smbiel lem perature * targel lemperature |
“air conditioner relay.rua, fan relay.run.'run indicator.on

ambieal temperature changed(tempersiure) [season switch in Is cooland
ambient femperature.asCelsius (largel lem perature.sCelsius - delajls

< “air conditioner relay.stop, " fan relay.stop(fan switch In Is auto),
“eun indicator off
[mbient temperatuce changed(semperatse] [season switch in Is heat and
. ambient lemperature < targel temperature |/
N— “furnace relav.run,*fan relay.run, run indicatar.on
ambient tem perature changeditemperature; |season switch in Is heal and
ambienl tem perature asCelsivs -+ {largel lemperature.asCelsius + dedla)]!

“furnace relay.stop,*fan refay.stopifaa switch in 1s auto),
“run indicator.off

Control

“fan relay.run

216

	SCAN0189_000.pdf
	SCAN0180_000.pdf
	SCAN0190_000.pdf
	SCAN0191_000.pdf

