
Autonomic Management of Component-Based
Embedded Software

Fabien Romeo∗, Franck Barbier† and Jean-Michel Bruel‡

LIUPPA

Université de Pau et des Pays de l’Adour
Av. de l’Université

B.P. 1155, F-64013 PAU, France
∗Email: fabien.romeo@univ-pau.fr

†Email: franck.barbier@franckbarbier.com
‡Email: jean-michel.bruel@univ-pau.fr

Abstract— Software components embedded in ubiquitous sys-
tems, especially those using wireless networking, are subject
to unpredictable behaviors inherent to using these systems
in the physical world. This calls for a runtime management
infrastructure to observe and control the components’ states
and consequently their resulting behaviors. In this paper, we
propose a framework for remotely administrating the functional
behaviors of software components deployed on wireless devices.
This framework is based on components locally managed by
internal managers. At the crossroads of the administration system
and the wireless application itself, these internal managers master
the components’ actions by interpreting executable models which
themself implement the components’ expected behaviors. Besides,
high-level managers define and apply management policies to the
application’s global behavior through the use of these internal
managers. Such a coordination occurs through composition.

I. INTRODUCTION

Component-based development is a hot topic in the embed-
ded system domain, as illustrated by the numerous research
investigations for designing software of such systems as as-
semblies of components (e.g., pect [1], koala [2], pecos [3],
beanome [4], or frogi [5]).

Many studies have shown that embedded system devel-
opers expect a better analysis of software behavior: better
testability and debuggability of components are among the
major requirements [6], [7]. These matters are reemphasized
by the recent ubiquitous shift of embedded systems, which
are more than ever subject to unexpected behavior due to
their physical integration into an evolving environment [8]. So
even if software components’ behavior is intensively tested at
development time, ubiquity generates enhanced management
requirements at runtime. This is where autonomic computing
comes into play [9].

Autonomic computing is a new approach which aims at
building computing systems that can self-manage. Its ultimate
goal, which seems utopian today, is to totally remove hu-
man intervention from the maintenance process by providing
software with the ability to self-configure, self-optimize, self-
heal and self-protect. Some frameworks, such as [10], enable
the development of autonomic component-based applications
by defining management rules based on components’ internal

variables. These rules, which are conditional expressions, are
interpreted at runtime by management agents in order to
control the application’s behavior. Although they allow to
automate some activities in the management process, there is a
major drawback in using these frameworks. In [10], there is no
design technique and support (dedicated modeling constructs,
ways of deriving these constructs into concrete management
code, etc) that allow us to instrument their autonomic man-
agement philosophy. In the domain of embedded systems, the
need for such design technique and support is required.

In order to facilitate the design of autonomic component-
based embedded software, enhancing the management of such
systems, we propose an infrastructure in which components are
controlled by internal managers through executable models of
the components’ functional behavior. For this we use UML 2
State Machine Diagrams, a variant of Harel’s statecharts [11],
which is a recognized modeling construct in the domain of
embedded systems [12]. Because these models are executable,
the abstraction effort realized at development time leads to
concrete software artefacts accessible at runtime.

II. INTERNAL MANAGERS AND BUSINESS COMPONENTS

In classical management solutions [9], [13], the application
and the management system interact through sensors and
actuators – or effectors in the autonomic metaphor. Sensors
are used by managers to probe the application and actuators
are used to execute application actions.

In CBSE, [14] has defined a specific interface, the Diagnos-
tic and Management interface, which provides selective access
to the internals of the components for management purposes.
Since components communicate through their interfaces, it is
natural to specify sensors and actuators as interfaces. Figure
1 depicts, through UML 2 Component Diagrams the resulting
architecture of our notion of locally managed component. We
have gathered in management ports three types of interfaces
acting as sensors and actuators to relay information between
the business component and the internal manager inside the
locally managed component.

From a design perspective, we have on one side the business
component, which implements the concrete business func-



Managed Component

Business
Component

provided
interface

required
interface

external
effector

external
pushed
sensor

external
pulled
sensor

external
application

port

external
management

port

internal effector

internal
pulled sensor

internal
pushed sensor

internal
management

port

internal
management

port

Internal
Manager

Fig. 1. Managed Component Architecture

tionalities, i.e. the computation, and on the other side the
internal manager, which controls the component according to
its defined behavior model. In this way, the internal manager
totally encapsulates the control logic, which is then external-
ized from the business component (as recommended by [15])
to maximize loose coupling between components. We have
thus been able to compose components according to their
behavior models [16], but the definition of such a composition
mechanism is out of the scope of this paper.

The managed component can also communicate with other
external components through classical provided and required
interfaces. These interfaces are part of an external application
port that is connected to the business component responsible
for business functionalities. The internal management is con-
nected with an external management port, which is comprised
of sensors and actuators, through which the management
system can query the manager about its component’s states
and act on its behavior (see section IV).

III. BEHAVIOR MODEL FACILITATING THE MANAGEMENT

OF COMPONENTS

The principle of the management framework is to include
a statechart [11] within each managed component’s internal
manager. This statechart specifies the component’s behavior
by a set of states and transitions. Figure 2 represents a detailed
UML 2 diagram relating to an example of a managed compo-
nent. Its behavior is defined by the statechart in Figure 3. The
detailed component diagram explicits the interfaces defined
in Figure 1 and the implementation classes of this managed
component. The behavior of this component is executed by a
statechart engine, the Statechart monitor associated with the
internal manager.

During its execution, this managed component only can be
in one of its two mutually exclusive states SA or SB. According
to statechart formalism, SA is the initial state. In this state,
a request on service1 exposed in the component’s functional
interface would generate an event in the internal manager that
would trigger a transition from SA to SB, requests on any
other service would have no effect. Conversely, in state SB this
same event would trigger a transition to SA, no matter what

substates the component may have. SB is a composite state
divided into orthogonal regions. At SB entry, the component
is simultaneously in substates S10, S2 and S3, which causes
the internal manager to execute in parallel through the internal
effector action0 and action3 on the business component which
implements them. In S10 substate, a call to service2 could
trigger a transition to S11 or a transition to S12 depending
on whether guard1 or guard2 hold. Note that only one of
these two guards can hold simultaneously as specified, if they
could hold two at the same time there would have been a
consistency error in the statechart due to indeterminism. So if
guard1 holds, action1 is executed and the component enters
into substate S12. Notice that it also re-enters into S2, as a
self-transition is defined for this state upon detection of event
service2, regardless if guard1 or guard2 hold. If guard2 holds,
then a signal is sent to component self, i.e. to itself, as specified
by the following notation ˆself.serviceX.

This example illustrates the relationship between the inter-
nal manager and the business component it controls. We can
see that two kinds of data need to be captured by the manager:
service requests and low-level states. Low-level states are
values of objects’ attributes that are traditionally monitored in
management and are collected here in an abstract way by the
evaluation of predefined guards. In management, two different
models are used to monitor data: push and pull models [17].
The pull model is based on the request/response paradigm. In
this model, the manager sends a data request to the managed
host according to its needs, then the managed host replies.
Such a sensor, which we call pulled sensor, is used to evaluate
the statechart’s guards whenever required by adding a provided
interface to the business component. Conversely, the push
model is based on the publish/subscribe/distribute paradigm.
In this model, the manager specifies the data it is interested in,
then the managed host is responsible for pushing this data to
the manager whenever they change. Thus a pushed sensor is
perfectly adapted to collect the business component’s incoming
events upon reception. We have added a required interface to
the business component to equip it with such a sensor.

IV. EXTERNAL MANAGEMENT OF COMPONENTS

In the previous section we have seen that the internal man-
ager is responsible for the direct monitoring and controlling
of the managed component’s business activity. But since it
is not fully self-manageable, management information needs
to be acquired by a higher-level management system. In our
context of deploying components in embedded systems, the
management system has to perform wirelessly, away from
managed components. The reason for not integrating this
management system into the application system itself is two-
fold. First, as we are in a wireless context we aims at avoiding
the overload of wireless devices with heavy management
computation. Second, the user interfaces of such systems, often
mechanical, are minimal when they exist and thus are not
appropriate for management activity.

Hence, we choose to replicate the behavior, i.e. the stat-
echart, of managed components on the management side.



«require»

«class»
Business component 
Implementation Class

«service» service1()
«service» service2()
«service» serviceX()
«action» action0()
«action» action1()
«action» action2()
«action» action3()
«action» action4()
«guard» guard1()
«guard» guard2()

Business Component
«implement»

«interface»
Business Component 
Functional Interface

service1()
service2()

serviceX is not part of the functional 
interface since it is only sent internally

1

«class»
Internal Manager 

Implementation Class
control_service1()
control_service2()
control_serviceX()
execute(action)
to_state(state)
in(state)

_Composytor::Statechart_monitor

«interface»
Internal Pushed 

Sensor
control_service1()
control_service2()
control_serviceX()

«interface»
Internal Pulled 

Sensor
guard1()
guard2()

«interface»
Internal Effector

service1()
service2()
serviceX()
action0()
action1()
action2()
action3()
action4()

«interface»
External Pushed 

Sensor
state_changed(transition)

«interface»
External Pulled 

Sensor
in(state)

«interface»
External Effector

execute(action)
to_state(state)

Internal Manager
«implement»

«require»

«require»

«require»

Fig. 2. Managed Component Detailed Architecture

Managed Component

S11
entry: action1

S2
entry: action3

S10
entry: action0

S12
entry: action2

SB

SA

S3service2 serviceX / action4

service1

service1
service2 service2

service2 [guard1] / ^self.serviceX service2 [guard2] / action1

with (guard1 => not guard2) and (guard2 => not guard1)

Fig. 3. Managed Component Behavior



In managed component internals, the data we managed are
events and low-level states which are captured at runtime
by the state machine as abstract current states and fired
transitions (as shown in section III). Only these higher-level
data will be managed through external sensors and effectors.
This provides an enhanced vision of the component’s business
logic without decreasing the management possibilities. Indeed,
our management system supports three types of control:

• control by event: an event corresponding to a request of
service from the component’s functional interface is sent
to the managed component. This is equivalent to what
could be done by a component’s client.

• control by state: the managed component is forced into
a specified state defined in its statecharts. The control
induced by the statechart’s transitions are bypassed to
put the component directly into the desired current state.
This is equivalent to having a transitive closure on the
flat state graph which corresponds to the statechart of the
component.

• control by action: it provokes the direct execution of
an action in the business component of the managed
component without making any change in its current
behavior state.

V. CONCLUSION

In this paper, we have presented a management system of
software components deployed in wireless embedded systems.
Our solution focuses on the management of the functional
behavior of the components. To that end, we have designed
internal managers responsible for controlling the behavior
of managed components by means of executable statecharts.
Thanks to these abstract models of their behavior, the remote
management system can efficiently monitor and control them.

We have validated our approach by a prototype running on
real devices and implemented for the Java Platforms. This
infrastructure is named WMX1, which stands for Wireless
Management Extensions. It is based on a Java library that
enables the execution of Harel’s Statecharts: the PauWare
library2 [16]. In WMX, both internal and external managers
are built on top of this library: internal managers use the J2ME
version, called Velcro, and external managers use the J2SE
standard version. Communications between these components
have been generalized and they are delegated to specific
adapters supporting the chosen wireless technologies (Wifi,
Bluetooth, WMA, ...). The overall management system relies
on the management standard JMX and thus can be incorpo-
rated into existing JMX-compliant management solutions.

Quantitatively speaking, WMX fits into a 47.4 Ko jar bundle
for the embedded side and our benchmarks reveal only 50.73%
of execution time overhead compared to an output on a simple
log console (average time is 38.91 µs against 25.82 µs per
state change on our test system).

We are also currently working on higher management
policies that could be based on our system in order to make

1available at http://www.univ-pau.fr/˜fromeo/wmx
2available at http://www.pauware.com

management activity more and more automated. Moreover,
coupling our system with other autonomous systems would
be interesting also.

Another interesting topic is in the separate design of com-
ponents from a business perspective and from a behavioral
perspective. Here, we have separated these two facets into
two different sub-components of our managed component.
The aspect paradigm seems to be an elegant and appropriate
solution to compose these two parts and it would merit further
investigation.

REFERENCES

[1] K. C. Wallnau, “Volume III: A Technology for Predictable Assembly
from Certifiable Components,” Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, USA, Tech. Rep., april 2003.

[2] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee,
“The Koala Component Model for Consumer Electronics Software,”
Computer, vol. 33, no. 3, pp. 78–85, 2000.

[3] M. Winter, T. Genssler, A. Christoph, O. Nierstrasz, S. Ducasse,
R. Wuyts, G. Arvalo, P. Mller, C. Stich, and B. Schnhage, “Compo-
nents for Embedded Software — The PECOS Approach,” in Second
International Workshop on Composition Languages, In conjunction with
16th European Conference on Object-Oriented Programming (ECOOP),
Malaga, Spain, 2002.

[4] H. Cervantes and R. S. Hall, “Beanome: A Component Model for the
OSGi Framework,” in proceedings of the Workshop on Software In-
frastructures for Component-Based Applications on Consumer Devices,
Lausanne, Switzerland, September 2000.

[5] M. Desertot, H. Cervantes, and D. Donsez, “FROGi: Fractal components
deployment over OSGi,” in 5th International Symposium on Software
Composition SC’06, Vienna, Austria, March 2006.

[6] I. Crnkovic, “Component-based Software Engineering for Embed-
ded Systems,” in International Conference on Software engineering,
ICSE’05. St. Luis, USA: ACM, May 2005.

[7] A. Möller, J. Fröberg, and M. Nolin, “Industrial Requirements on
Component Technologies for Embedded Systems,” in International
Symposium on Component-based Software Engineering (CBSE7).
Edinburgh, Scotland: Springer Verlag, May 2004. [Online]. Available:
http://www.mrtc.mdh.se/index.phtml?choice=publications& id=0687

[8] T. Kindberg and A. Fox, “System Software for Ubiquitous Computing,”
IEEE Pervasive Computing, vol. 1, no. 1, pp. 70–81, 2002.

[9] J. Kephart and D. Chess, “The Vision of Autonomic Computing,” in
Computer Magazine. IEEE Computer Society, 2003, vol. 36, pp. 41–
50.

[10] H. Liu and M. Parashar, “A component based programming framework
for autonomic applications,” in International Conference on Autonomic
Computing, New York, NY, 2004.

[11] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231–274, June
1987.

[12] W. Grieskamp, M. Heisel, and H. Dörr, “Specifying Embedded Systems
with Statecharts and Z: An Agenda for Cyclic Software Components,”
Lecture Notes in Computer Science, vol. 1382, pp. 88–115, 1998.

[13] L. E. Buzato, “Management of Object-Oriented Action-Based Dis-
tributed Programs,” Ph.D. dissertation, University of Newcastle upon
Tyne, 1994.

[14] H. Kopetz and N. Suri, “Compositional design of RT systems: A concep-
tual basis for specification of linking interfaces,” in 6th IEEE Interna-
tional Symposium on Object-oriented Real-Time Distributed Computing
(ISORC), Hokkaido, Japan, may 2003.

[15] K. K. Lau, P. V. Elizondo, and Z. Wang, “Exogenous Connectors for
Software Components,” in Eighth International SIGSOFT Symposium
on Component-based Software Engineering. Springer Verlag, january
2005.

[16] F. Romeo, C. Ballagny, and F. Barbier, “PauWare : un modèle de
composant base etat / PauWare: a State-Based Component Model,” in
Journées Composants / Components Days, Canet en Roussillon, France,
october 2006, pp. 1–10.

[17] J.-P. Martin-Flatin, “Push vs. Pull in Web-Based Network Management,”
in Proc. 6th IFIP/IEEE International Symposium on Integrated Network
Management (IM’99), Boston, MA, May 1999, pp. 3–18.


