
MDA-BASED MANAGEMENT OF UBIQUITOUS SOFTWARE COMPONENTS

Franck Barbier & Fabien Romeo
PauWare Research Group – Université de Pau

Av. de l’université, BP 1155, 64013 Pau CEDEX – France
Franck.Barbier@FranckBarbier.com, Fabien.Romeo@univ-pau.fr

Introduction: the Model-Driven Architecture (MDA) [1] software engineering paradigm
aims at considering “models” as first-class products within a software development process.
More precisely, this new approach is based on model transformation in which the generated
code (in a fairly abstract or detailed form) is just an “implementation model”. Concretely,
MDA is strongly influenced by the Unified Modeling Language even if other modeling
techniques are acceptable. MDA advocates Platform-Independent Models (PIMs) and
Platform-Specific Models (PSMs), the later resulting from transformations of the former. In
this optic, it becomes natural to focus on PSMs which specifically target ubiquitous
applications (see for instance [2]).
In a MDA approach, the need for model checking is often based on “executability” [3]. So,
the modeling language used, if “executable”, enables model simulation. Such an activity
occurs at development time and encompasses, of course, model checking activities, but also
testing activities if models include technical details which closely refer to deployment
platform properties. In the area of ubiquitous computing, deployment platforms have special
features. A relevant research statement is therefore the look for MDA concepts, techniques
and tools that comply with the development and the inner nature of ubiquitous applications.
For instance, if one is able to provide different executable models which correspond to
distinct software component types, how then to deploy and run these models/components in
wireless and mobile devices? How to protect these models/components from instable
communication, a key characteristic of wireless and mobile platforms? How to endow these
models/components with autonomic features (self-managing, self-healing, dynamical
reconfiguration…) since controlling runtime conditions is more difficult in ubiquitous
systems compared to common distributed systems? Etc.
This experiment paper proposes a MDA-compliant execution engine called PauWare.
(www.PauWare.com/PauWare_software/). This tool is mainly composed of a Java library
which enables the simulation of UML 2 Sequence Diagrams (i.e., scenarios) and UML 2 State
Machine Diagrams, a variant of Harel’s Statecharts. The PauWare.Velcro sub-library is a
J2ME-compliant (Java 2 Mobile Edition) tool which supports the design of the inner workings
of software components by means of Statecharts.
We stress in this paper the problem of remote management of software components embedded
in wireless and mobile devices and, in certain cases, the possibility of equipping such
components with self-managing characteristics [4]. We think that ubiquitous software
components and applications require larger management capabilities. Management relies on
dedicated infrastructures like, for instance, Java Management eXtensions (JMX) [5]. Despite
the availability of management standards, there are few techniques that explain how to
instrument the dynamical reconfiguration of components running in remote devices. What
could mean self-healing and how one may implement it? Etc.
In PauWare, supporting dynamical reconfiguration leads to forcing the state of a component
to a well-known stable consistent “situation”. For instance, in the figure below, one may go
(or go back) to the Idle state in bypassing the “normal” behavior of the component. The stable
consistent nature of a statechart is a modeled state1, Idle here plus some invariants that can be

1 Several nested and/or parallel states are also possible in conformance with all of the power offered by the
Statecharts modeling technique.

checked at runtime (a port must be closed). States of components are modeled at development
time but are also explicit at deployment time since models persist at runtime. The execution
model of UML 2 is a run-to-completion model, meaning that component clients’ requests are
queued and cannot interrupt the current processing, if any, of a request.
Management services may therefore be incorporated into a configuration interface. For
concrete reasons, such a facility currently relies in PauWare on JMX and on the Wireless
Message API (WMA) for communication. Self-management is a more tricky problem. A
component may aim at itself deciding to launch a self-configuring operation, “reset” for
instance, namely in case of fault recovery: this is typically self-healing. We propose a
(parameterized) rudimentary mechanism which is a kind of “undo”. If the “autonomic” flag is
turned on, a component automatically tries to roll back the current transaction (a global
transition from the stable consistent context raising a problem to the immediately prior one) in
case of fault detection. Roll back may succeed but it may also fail because many internal
business operations (see for instance x, y, z and w in the figure below) are executed within a
run-to-completion cycle. Canceling the effect of such operations is not always possible. State
invariants therefore help to establish if roll back succeeded: all state invariants attached to all
nested and/or parallel states must be true when returning to these states.
Conclusion: we think that ubiquitous applications and components require self-adapting
capabilities. We nevertheless observe that a gap between theory and practice still remains.
While the notions of self-management, self-adaptation are evident and may have several
formal shapes, few means currently exist for supporting these concepts in ubiquitous
platforms. In the global world of software engineering, MDA put models forward. In such a
context, we exploit the power of reputable models like Statecharts to implement self-
adaptation.

request b

request g

S2

S21

S22
entry/

^self.request h

S3

S31 S32

Busy

request c

request f

entry/ w
exit/ x

entry/ y
exit/ z

PauWare component

S1

S11 S12

request d

request e

Idle
[port.isClosed()]

go

request c

request h/ a

1. Mellor, S., Scott, K., Uhl, A., Weise, D.: MDA Distilled – Principles of Model-Driven
Architecture, Addison-Wesley (2004)

2. Grassi, V., Mirandola, R., Sabetta, A.: A UML Profile to Model Mobile Systems, Proc.
«UML» 2004, LNCS #3273, Springer, pp. 128-142, Lisbon, Portugal, October 11-15
(2004)

3. Mellor S., Balcer, S.: Executable UML – A Foundation for Model-Driven
Architecture, Addison-Wesley (2002)

4. Barbier, F., Romeo, F.: Administration of Wireless Software Components, Proc.
ETSI/MOCCA Open Source Middleware for Mobility Workshop, European
Telecommunications Standards Institute, Sophia-Antipolis, France, April 6 (2005)

5. Kreger, H., Harold, W., Williamson, L.: Java and JMX – Building Manageable
Systems, Addison-Wesley (2003)

