
Management of Wireless Software Components
Fabien Romeo

LIUPPA
Université de Pau et des Pays de l’Adour

F-64000 Pau, France
+33 5 59 40 76 52

fabien.romeo@univ-pau.fr

Franck Barbier
LIUPPA

Université de Pau et des Pays de l’Adour
F-64000 Pau, France

+33 5 59 40 77 43

franck.barbier@franckbarbier.com
ABSTRACT

Component-Based Software Engineering (CBSE) is
nowadays so widely recognized that its principles naturally apply
to ubiquitous computing. In this scope, we discuss software
components that are deployed in mobile and wireless devices.

Event though mobile and wireless devices execute programs
like ordinary computers do, their limited capabilities preclude for
fully controlling their embedded software components. This calls
for a global management infrastructure in which wireless
components are just pieces in a puzzle. This puzzle is a highly
distributed application in which assemblies are made of wireless
and non-wireless components.

Each component is implemented by means a UML 2-
compliant state machine. A proposed Java library supports the
executability of this kind of UML diagram. Management occurs
through the supervision and the control of remote components
through replicated components. The paper describes how the
management architecture and activities may formally rely on state
machines and event processing.

Keywords
Software components, management, mobile and wireless systems,
UML.

1. INTRODUCTION
A major trend in mobile systems is the design of their software as
an assembly of components (Java components in J2ME
environments, C# components in Windows CE environments…).
Components are interconnected through their interfaces while
hiding their implementations in order to increase their reuse and
to allow to be deployed by third parties. Deployment occurs on
various devices such as mobile phones, PDA, set-top boxes, smart
cards and so on. Owing to the fact that deployment environments
are different from development environments, abnormal behaviors
and/or misuses occur and, consequently, call for remote
administration and supervision [2], [11].

The purpose of this paper is to present an administration system
for wireless software components. Section 2 describes the global
view of our system while we detail in Section 3 how we may
design components behaviors so that models (i.e., state machines)
are directly accessible at runtime and serve as supports for
management actions, for instance, roll backs in case of failures.

2. GLOBAL SYSTEM
Figure 1 is a global view of the system we propose for managing
wireless software components. Administration focuses on the
configuration of components and their possible dynamic
reconfiguration in order to ensure a real control of wireless
devices: reaching given states through “reset” actions for instance.

Supervision and control are dual activities involved in
management. While control implies that the manager changes the
state of the managed component, supervision consists for the
manager in acquiring information on the actual state of the
managed component. Considering that these activities have to be
realized by means of wireless communication and in relation with
highly constrained devices, our intention is to minimize overheads
generated and sustained by our management system on the mobile
side. The quality of service must not be damaged by the execution
of administration/supervision functions. We on purpose create
images of the managed components in the management system.
The manager directly accesses these image which acts as a proxy
for the wireless components.

On the management side, due to the existence of large and
complex behaviors, we represent component behaviors as UML
statecharts [8] and implement them with an associated Java library
that in essence supports executability for UML statemachine
diagrams. By plugging into components such executable
statemachines, we forward wireless components’ events to their
images or replications on the management side. By this means, the
view of the application behavior remains up to date.

The behavior management mechanism based on events is detailed
later. Figure 2 depicts its implementation on a wireless
environment where a J2ME [18] wireless component called A (a
simple gearbox for illustration purposes) communicates by means
of message (B) with its J2SE replicated component (C). The
messaging system that links the world of J2ME to the world of
J2SE, is realized with the WMA technology [17].

Figure 1. Management System of Wireless Software
Components

The great advantage and the uniqueness of our approach is the
fact that we take advantage of the expressiveness of statecharts to
supervise components. Contrary to other supervision systems that
represent the state of the system with the value of some variables
or attributes, we have here access to abstract, hierarchical and
concurrent states of statecharts defined when modeling
component behaviors. This gives an accurate view of the global
state of the application and allows to envisage new administration
policies based on these logical states. Furthermore, the use of
statecharts offers new capabilities in the control activity. By
directly accessing statemachines of running components, we can
constrain their behavior and completely manage the application.

The global architecture of our administration system is based on a
standard for administration called JMX (Java Management
eXtensions) [13], extends the ideas of the Built-In Test (BIT)
technology [3], [4] which did not initially provide any support for
administration. This paper fills this gap by explaining how test
code that remains in components is remotely monitored in our
management infrastructure.

3. COMPONENT BEHAVIOR
MANAGEMENT
In the spirit of model-driven engineering (MDE) [10], which is a
recommendation of the OMG, we model the behavior of wireless
components with UML executable statecharts.

Figure 3 depicts an elementary statechart diagram composed by
two states, state 1 and state 2, and a transition from state 1 to

state 2 fired by an event of type source event which generates in
reaction an action of type action. In the offered architecture,
issues consist in keeping the statechart of the Replicated
component “ in line” with the statechart of the Wireless component
when an event is processed within the wireless environment.

“ In line” does not mean that both statecharts are always
synchronized. One main advantage of Harel’s Statecharts is
broadcast which allows to send events without any knowledge
about the receiver’s status. In such a context, a basic principle is
thus to notify the Replicated component when an event appears in
the statechart of the Wireless component.

We however need for distinguishing between different types of
events (next sections) in the sense that some types of events may
be simulated on the management side instead of being
systematically forwarded from the wireless environment.

Typically, a pressed button on the wireless device amounts to
sending a typed event occurrence to the management side in order
to capture the Wireless component’ s behavior. In contrast, timer
event services for instance, may be acquired independently by a
Wireless component and by its image on the management side so
that communication decreases. This case may thus lead to a lost of
synchronization between both statecharts but without coherence
lost since, as said before, any statechart is able to receive and to
process any event type at any time.

We simply solve such a problem by supplying a management
operation called “ re-synch” which may be launched on demand
(i.e., user-oriented decision) and only acts on the Replicated
component’ s statechart. We ground such an approach on a method
which consists in forcing the statechart of the Wireless component
and that of the Replicated component so that they fall into the
same states. Once again, such a method is supported by the
precise and rigorous components’ inside description resulting
from the power of Harel’s Statecharts and our associated Java
library called PauWare.Velcro.

In the following sub-sections, we define the different types of
events we have identified and we describe the way they are
managed in our management system.

3.1 Basic Events
Definition

“A basic event is an event whose source is local to the wireless
system and that trigger an internal action in the component, i.e. an

Figure 2. Java Implementation of a Management System for
Wireless Software Components

Figure 3. Elementary Statecharts

Figure 4. Basic Event Supervision

action that does not need any other resources than those available
in the considered wireless system.”

This is the kind of event we use in particular to tell an user
interface to display new information [9] or to launch some
processing in the component for instance.

The interaction diagram in Figure 4 depicts the communication
between the Wireless component and the Replicated component
when a source event is received: a message of type supervision
message is dispatched to the Replicated Component which in fact
synchronizes the statecharts of both components. This is how is
realized the supervision of a basic event.

The control of a basic event is described in the diagram of Figure
5. Contrary to Figure 4, the source event is not received by the
Wireless Component but the Replicated component does since it
is the one that is in direct relation with the manager. When such
an event is received, the statecharts of the Replicated component
are modified and a control message is sent to the Wireless
component which synchronizes then and performs the actions
related to the triggered transition. The control message is
interpreted differently from an event in order not to activate the
supervision process which, by sending another supervision
message, would trigger once again the event on the Replicated
component and would consequently desynchronize the statecharts
if the reaction to this event is not idempotent.

3.2 Communication Events
Definition

“A communication event is an event that involves an incoming or
outgoing wireless communication between the considered
wireless system and a remote component.”

Software components deployed on wireless systems are highly
prone to use wireless communication capabilities available in
their host systems in order to realize distributed applications.

The diagrams of figures 6, 7, et 8 detail the supervision and the
control of communication events. In those diagrams a third entity
comes into play, the Remote component which is the component
that establishes a wireless communication with the Wireless
component. There is however no diagram to explain the control of
an incoming communication event but there is no use of it since
the Replicated component on which the control is initiated is a
replication of the Wireless component and consequently has no
handle on the Remote component which is deployed on a remote
system. In order to control an incoming communication event, the
Remote component has to be also managed by the administration
system : the Remote component can then be seen as the Wireless
component and this corresponds to the diagram in Figure 8.

3.3 Service Events
Definition

“A service event is a particular case of basic event, it is an event
whose source comes from a service proper to the considered
wireless system.”

Timers, notifications of phone calls on mobile phones or system
interruptions are examples of service events that one can have to
handle. To access the service, the Wireless component requests it
to the corresponding Service component which generates
afterwards the corresponding service events.

Since service events are a particular case of basic events, they can
be managed the same way (cf. Figure 9). However services like
timers for instance generate numerous events which will be thus
expensive in supervision messages. Depending on the situation, it
can be interesting to replicate the service (Replicated service

Figure 5. Basic Event Control

Figure 6. Incoming Communication Event Supervision

Figure 7. Outgoing Communication Event Supervision

Figure 8. Outgoing Communication Event Control

component) on the administration systems in order to save these
communications (cf. Figure 10). This can lead to statecharts
divergence in the wireless component and in the replicated one,.
The solution to this problem is out of the scope of this paper.

4. RELATED WORK
The closest works to ours are those of [16] which defines a
middleware architecture allowing to administrate wireless devices.
This architecture uses the externalization principle of state,
structure and logic of the system to fully control the application at
runtime. Our approach uses in fact that same principle but at a
higher level of abstraction by using software components and
statecharts which allows our approach to be integrated in a
development method based on UML [15].

In the domain of software components, the paper [7] also uses a
model-based approach with Petri nets to administrate the behavior
of components, but it only tackles supervision and nothing is done
on control.

Other works take advantage of the use of statecharts in mobile
systems but they are more interested in modeling mobility like in
[1], [6], [12] or [14].

For technical aspects, the paper [5] shows the use of the JMX
technology in order to administrate the life-cycle of the
components of a service platform for wireless systems.

5. CONCLUSION
In this paper we presented an architecture to supervise and control
wireless software components’ behavior. The behavior of compo-
nents is described with statecharts which are directly executed on
the wireless system and replicated on the administration system.

This system currently works for the administration of the behavior
of components individually. The objective is to extend it by taking
into account the relationship between the components in order to
have a finer control of the assembled application. As a matter of

fact, analyze a deficiency on a component-based system or
reconfigure a component system are trickier problems. This
perspective of research relies on the formalization of a
composition relationship based on the states of components, i.e.
assembly rules on which administration rules themselves can rely.

6. REFERENCES
[1] Acharya, S., Mohanty, H., and Shyamasundar, R.K.: MOBI-

CHARTS: A Notation to Specify Mobile Computing Appli-
cations. In: 36th HICSS, IEEE Computer Society (2003) 298

[2] Banavar, G., and Bernstein, A.: Software Infrastructure and
Design Challenges for Ubiquitous Computing Applications.
In: Communications of the ACM Vol. 45 No. 12, ACM
Press (2002) 92–96

[3] Barbier, F., Belloir, N., and Bruel, J-M.: Incorporation of
Test into Software Components. In: 2nd International Confe-
rence on COTS-Based Software Systems, LNCS 2580,
Springer, Ottawa, Canada (2003) 25–35

[4] Edler, H., and Hörnstein, J.: Component+ Final Report.
http://www.component-plus.org/pdf/reports/Final report
1.1.pdf (2003)

[5] Frénot, S., and Stefan, D.: Open-Service-Platform Instru-
mentation – JMX management over OSGi. In: 1st French-
Speaking Conference on Mobility and Ubiquity Computing,
ACM, Nice, France (2004) 199–202

[6] Grassi, V., Mirandola, R., and Sabetta, A.: A UML Profile to
Model Mobile Systems. In: 7th International Conference,
LNCS 3273, Springer, Lisbon, Portugal (2004) 128–142

[7] Grosclaude I.: Model-based Monitoring of Component-
Based Software Systems. In: the 16th European Conference
on Artificial Intelligence. ECAI, IOS Press, Valencia, Spain
(2004) 1025–1026

[8] Harel, D.: Statecharts: a Visual Formalism for Complex Sys-
tems. In: Science of Computer Programming (1987) 231–274

[9] Horrocks, I.: Constructing the User Interface with
Statecharts. Addison-Wesley Professional; 1st edition (1999)

[10] Kent, S.: Model Driven Engineering. In: 3rd International
Conference on Integrated Formal Method, LNCS 2335,
Springer, turku, Finland (2002) 286–298

[11] Kephart, J., and Chess, D.: The Vision of Autonomic
Computing. In: Computer Magazine Vol. 36 No. 1, IEEE
Computer Society (2003) 41–50

[12] Knapp, A., Merz, S., and Wirsing, M.: Refining Mobile
UML State Machines. In: 10th International Conference on
Algebraic Methodology and Software Technology, Springer-
Verlag (2004) 274–288

[13] Kreger, H., Harold, W., and Willliamson, L.: Java and JMX,
Addison Wesley (2003)

[14] Latella, D., Massink, M., Baumeister, H., and Wirsing, M.:
Mobile UML Statecharts with Localities. In: Global
Computing, IST/FET International Workshop,. LNCS 3267,
Springer, Rovereto, Italy (2004) 34–58

[15] Mellor, S., and Balcer, M. Executable UML: A Foundation
for Model Driven Architecture. Addison-Wesley (2002)

Figure 9. Service Event Supervision

Figure 10. Service Event Replication

[16] Román, M., and Islam, N.: Dynamically Programmable and
Reconfigurable Middleware Services. In: 5th ACM/IFIP/
USENIX International Conference on Middleware, Springer-
Verlag, Toronto, Canada (2004) 372–396

[17] Siemens AG.: Java Wireless Messaging API (WMA)
Specification Version 1.1. (2003)

[18] Sun Microsystems: Connected Limited Device
Configuration, Specification Version 1.0a, J2ME (2000)

